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SUMMARY 

The Karhunen-Ldve (K-L) procedure is applied to a turbulent thermal convection database which is generated 
numerically through integration of the Boussinesq equation in a periodic box with stress-free boundary conditions 
using a Fourier collocation spectral method. This procedure generates a complete set of mutually orthogonal 
functions in terms of which the turbulent flow fluctuation field is represented optimally in the mean square sense. 
A study is performed ranging from the direct projection of the database onto the set, resulting in a considerable 
data compression, to developing a system of dynamical equations employing the set as a basis for approximating 
the Boussinesq equation. In the latter a new strategy is proposed and tested for the treatment of the mean 
component of the turbulent flow. Finally, the direct projection and the dynamical equations are used to study the 
effects of truncation on the representation of the turbulent flow. 
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1. INTRODUCTION 

A turbulent flow involves many scales of motion. This sets the basic requirement that a direct 
numerical simulation must meet if it is to represent turbulence. All scales must be adequately resolved 
by the computational mesh. This, together with the requirement that a large sample of the set of all 
possible motions allowed by the governing equation is necessary to provide an adequate statistical 
evaluation, results in a vast database to be generated through the simulation for subsequent analysis 
and assessment. 

A technique based on the Karhunen-Lokve (K-L) procedure’ has been used extensively in 
extracting essential features of the flow hidden within the database. These features are then used as a 
basis in subsequent data compression and model reduction schemes. Some applications range from 
data compression in turbulent thermal convection’ to model reduction in the Ginzburg-Landau (G-L) 
equation3 and in a turbulent boundary layer4 

The application of this procedure to the stochastic turbulent field was proposed by Lumley’ as a 
rational and quantitative method, referred to as principal orthogonal decomposition (POD), for 
extraction of organized structures from the field. New perspectives on the applications of the technique 
are presented in Reference 6. The technique is based on the decomposition of the turbulent flow 
fluctuation field into a weighted sum of mutually orthogonal eigenfunctions of the two-point 
correlation tensor which meet the boundary conditions and appropriate side conditions. This 
decomposition is unique and optimal in the sense that the random variables appearing as weights in the 
representation are statistically orthogonal and the mean square error resulting from the truncated 
representation of the flow is minimized. The energy retained in the truncated representation of the flow 
is maximized by ordering the eigenfunctions in the representation based on the corresponding 
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eigenvalues, which are interpreted as indicating the average energy of the flow along the direction of 
the eigenfunctions. This representation will be referred to as the K-L representation of the turbulent 
flow. 

As a consequence of the optimality of the decomposition, the first several terms in the K-L 
representation often contain a large fraction of the flow energy as a number of in turbulent 
flow have shown. The flow can then be satisfactorily approximated by its truncated K-L representation 
if one is interested in retaining only the energy-containing components of the flow. On the other hand, 
information regarding the less energetic components associated with the small scales of the flow will 
be lost through this truncation based on the energy criterion. Application-oriented modifications on the 
condition of optimality in the K-L procedure have been used in some studies.7v8 

In the present investigation the K-L procedure is applied to a numerically generated database. For 
this purpose the Boussinesq equation governing thermal convection is numerically integrated in a 
periodic box with hot lower and cold upper free surfaces under conditions that result in turbulent flow. 
The integration is performed using a Fourier collocation spectral method. Some earlier numerical 
studies of turbulent thermal convection can be found in References 2, 9 and 10 and references cited 
therein. A substantial compression in turbulence data is achieved through the K-L representation of the 
flow field. The effects of truncation are demonstrated on the flow reconstructed from its truncated K-L 
representation. In addition, a second database is generated through the numerical integration of the 
K-L-based dynamical system approximating the Boussinesq equation to demonstrate the effects of 
truncation in a dynamical environment as well as to test a new strategy presently proposed for the 
treatment of the mean component of the flow in such a dynamical approximation. This work is an 
extension of an earlier study reported in Reference 2. 

2. THE KARHUNEN-LOEVE PROCEDURE 

In the context of turbulence this procedure is a result of the search for the most similar structure + in 
the mean square sense to an ensemble of, say, realizations of a statistically time-stationary turbulent 
flow v(x) on a domain R. The search results in + satisfying the integral equation 

R(x, x')+(x')dx' = RJl(x)  

whose kernel is the two-point correlation tensor R(x, x') = (v(x) 8 v(x')) The brackets (.) denote 
ensemble averaging and @ denotes a dyadic product. For the bounded domain S l  the square 
integrability of the flow v, thus of R, and the symmetry of the kernel R assure us through the Hilbert- 
Schmidt theory that there are a countably infinite number of solutions to (1) forming a complete set of 
orthogonal fimctions {+"(x)} in terms of which the flow may be decomposed as 

The index n refers to a member of the set {+"(x)} which is ordered with respect to the decreasing 
eigenvalues I, 2 In+, 2 . . ., which are guaranteed to be non-negative, R, 2 0, by the non-negative 
definiteness of R(x, x'). The decomposition in (2) is unique in the way that the mean square error 
resulting from a truncated representation is a minimum among other possible orthogonal 
decompositions of the flow in the form of (2) and that the random expansion coefficients a, are 
statistically orthogonal, 

where superscript * indicates a complex conjugation. 
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3. THE RAYLEIGH-BENARD PROBLEM 

3.1. Governing equations 

This is the classic problem of the evolution of fluid heated from below in the presence of gravity. 
The mathematical model which governs this problem is the Boussinesq equation given in the standard 
normalization' ' by 

v * u  = 0 ,  (4a) 

aT 
- f u*VT = w -+- A T ,  (4c) at 

where u = [u, v ,  w] represents the velocity in the directions x = [x, y, z] respectively, T represents the 
deviation from the linear conduction profile -Pz, p is the pressure and e, is the unit vector in the 
vertical z-direction opposite to gravity. The two dimensionless parameters in (4) are the Rayleigh 
number Ra = g B H 4 a / ~ v  and the Prandtl number Pr = v/K.  

The system of equations (4) is considered over the spatial region S2 : 0 < x ,  y < A ,  0 < z < 1, with 
stress-free boundary conditions (the so-called free-free case) 

in the vertical direction and periodic boundary conditions in the horizontal x-  and y-directions with 
period A, where A is the aspect ratio LIH. 

3.2. Numerical procedure 

These equations are numerically integrated by means of a Fourier collocation spectral method. For 
this purpose the flow v = [u, TI is approximated by a truncated expansion in the form 

Nz 

V,h t )  2z c c c i,(k,, k,,. k,; t)v,(x), (6) 
IkJ lkJ <fN" k = O  

where Vk(x)  refers to the orthogonal Fourier basis functions satisfying the boundary conditions and k 
refers to the integer wave numbers (k,, k,,, k,). This approximation is substituted into (4) to yield a 
system of ODES for i,. The resulting system is then numerically integrated in time. For details on the 
numerical procedures the reader is referred to Reference 2 and references cited therein. 

The integration is performed for the parameter values Pr = 0.72 and Ra = 15Ra,, where the critical 
Rayleigh number is Ra, = 27x4/4. The aspect ratio A is taken as 242,  corresponding to the 
wavelength of maximum linear instability." All relevant spatial scales are resolved with the choice of 

The flow v is computed from a set of initial conditions taken from a previous study,2 until the flow 
quantities reach a statistically nearly stationary state. Then it is sampled at regular intervals to generate 
a database of 500 time samples, which are estimated to be uncorrelated, adequately representing the 
flow for the subsequent analysis. 

For the flow represented by the ensemble of time samples, the Nusselt number is found to be 3.938. 
The box-averaged values of the Taylor microscale Reynolds number and mixed temperature skewness, 
both based on the horizontal velocity, are 1 1.34 and 0.228 respectively. These values indicate that the 

N, = Ny = N, = 20. 
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flow is weakly turbulent in nature and this is in agreement with the simulation in Reference 9. The 
ensemble average is evaluated by a horizontal average over the x-y plane followed by a temporal 
average over the database. 

4. THE KARHUNEN-LOEVE REPRESENTATION 

The flow is decomposed into mean and fluctuating components 

v = (v) + v ’ ,  (7) 

where (v) = [0, ?“‘)(z)] and v’ = [u, 01. Subsequently, v’ is used to form the two-point correlation 
kernel in (1) after its mechanical and thermal components have been rescaled based on the scalings 
J(Ru P r / 2  N u ) x / H  and J ( 2  Nu3/Ru Pr)bH respectively. This new scaling follows from the physical 
arguments in Reference 2. The eigenproblem (1) is then solved using the direct method.6 The 
computation is significantly simplified using the symmetries of the flow, such as translational 
invariance in the horizontal directions and the discrete symmetries’ due to the geometry of the spatial 
domain. 

As an immediate consequence of the translational invariance, each eigenfunction takes the form 

JIk(x) = $(q)(kx, k,,; z) exp 2ni - exp 2ni - , ( ?) ( 7) 
with the corresponding eigenvalue now represented in the form = A(q)(k,, ky), where k = (k,, k,,, q )  
and q is the vertical quantum number. The eigensolutions come with a maximum degeneracy of eight, 
i.e. 

owing to the discrete symmetries. The corresponding eigenfunctions are related through the symmetry 
relations preserving the mutual orthogonality. 

There is actually a real flow vk associated with each eigenfunction corresponding to a conjugate pair 
of modes k and k*, referring to (k,, k,,, q )  and (-k,, -ky, q)  respectively, satisfLing the boundary 
conditions ( 5 )  and the continuity (4a) and represented by 

s ( x ,  t )  = ak(t)@(x) + ak*(t)@*(x), (10) 

where e* = (3rk)* and uk. = a ; .  The expansion coefficients uk are evaluated through the inner 
product (. , .) defined as 

ak(t) = (V’, a k )  = V&(X, l)($’:(x))* dx, (1 1 )  
R 

with the summation convention on a. These basic flows in turn act as building blocks and contribute to 
the building of the flow 

v = c vk, 
k 

where k runs through the conjugate pairs of K-L modes. 
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Table 1. Eigenvalues for first 10 degenerate K-L modes 

n (kx ,  k,, q )  Eigenvalue Degeneracy % energy 

1 0 1 1  
2 1 1 1  
3 0 1 2  
4 0 0  I 
5 1 2 1  
6 0 2  1 
7 0 1 3  
8 0 2 2  
9 0 0 2  

10 0 3  1 

1 .om0 
0.2528 
0.0668 
0.0370 
0.0353 
0.0338 
0.03 12 
0.028 1 
0.0257 
0.022 1 

4 
4 
4 
1 
8 
4 
4 
4 
2 
4 

54.44 
13.76 
3.64 
0.50 
3.84 
I .84 
1.70 
1.53 
0.70 
1.20 

4.1. K-L modes 

Table I lists the first 10 eigenvalues, each scaled by the largest eigenvalues. Since the total mean 
energy 8 is given by the sum of the eigenvalues 

((v’, v’)) = 8 = c A”, 
n 

each eigenvalue is listed with the fraction of energy associated with it. The first four, not counting the 
degeneracies, account for more than 70% of the energy. Figure 1 shows the vertical spatial structures 
4(q)(k1,  k,,; z)  of the corresponding eigenfunctions. They clearly cany the character of the flow, as 
shown by the satisfaction of the boundary conditions and the continuity, the symmetry (or 
antisymmetry) about the midplane and the visible boundary layer and the flat central region. The 
vertical velocity and temperature components have equal parity; they are both symmetric or 
antisymmetric about the midplane. The horizontal and vertical velocity components have opposite 
panties, since their spatial structures are connected through the continuity. In general the 
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eigenfunctions for a given (,kx9 k,.) are observed to exhibit an increasing number of zero crossings 
(sequency) with q. 

The flow associated with the first K-L mode is in the form of two-dimensional convective rolls of 
wavelength A .  This can be seen in Figure 1 (a) in that the magnitude of the vertical velocity reaches its 
peak in the midplane where the horizontal velocity is zero. In the upper and lower free surfaces, on the 
other hand, the magnitude of the horizontal velocity reaches its peak while the vertical velocity is zero. 
The temperature profile exhibits peaks outside the core region and the visible boundary layers. The 
mode is fourfold degenerate and the degeneracy arises because the rolls can align with either x-  or y- 
axes corresponding to the flows vC0.'.') and v(','.') as in (10) respectively. The second K-L mode has a 
similar vertical spatial structure as shown in Figure l(b) (the horizontal velocity components coincide) 
and represents a flow in the form of two-dimensional convective rolls of wavelength A/,/2. These 
rolls, represented by v('.'*') and v('.-'-'),  are aligned with the horizontal diagonals of the periodic box 
as determined by the horizontal wave numbers k, and k,,. The two modes hold a total of about 68% of 
the total energy. They are driven by the release of gravitational energy resulting from the heated fluid 
moving up and cooled fluid moving down. 

The third K-L mode, associated with (0, 1, 2), represents a flow of purely shearing motion with no 
vertical velocity component as shown in Figure l(c). It is the first energetic mode with a non-vanishing 
vertical vorticity component. In the absence of vertical velocity its motion can only be sustained by 
non-linear interactions with the other modes. This is consistent with the fact that the non-linear terms 
in the equation of motion are responsible for the generation of vertical vorticity." In the Boussinesq 
equation (4) the vertical velocity provides the active coupling between the mechanical and thermal 
components of the flow. This is reflected in the K-L modes where those eigenfunctions with no vertical 
velocity component are purely mechanical, involving only the horizontal components of velocity, or 
purely thermal. Purely thermal modes appear only in the family of (0, 0, q )  modes that are allowed to 
be onefold degenerate under the discrete symmetries of the flow. 

The continuity (4a) and the boundary conditions imply that the horizontal average of the vertical 
velocity component is identically zero at each instant of time and at any vertical location. As a 
consequence, all (0, 0, q)  modes lack the vertical velocity component and appear either purely 
mechanical or purely thermal, characterized by twofold and onefold degeneracy respectively. These 
modes represent the temporal variation about the mean flow (v). As shown in Figure l(d), the fourth 
K-L mode (0, 0, 1) represents a onefold degenerate, purely thermal background flow. 

4.2. Data compression 

For the Fourier representation of the flow in the form of (6), only three components of i need to be 
saved for each ( k x ,  k,, k,) at each instant, because the velocity components of i are related through the 
continuity (4a). However, the K-L representation (lo)-( 12) requires only ak to be saved for each 
(k,, k,, q) at each instant. 

In order to demonstrate data compression, the K-L representation is compared with the Fourier 
representation of the flow in view of their ability to capture energy in respective truncations involving a 
given number of saved constants. The average energy capture in the K-L representation is given by the 
corresponding eigenvalue 2, for each set of degenerate modes (kx,  k,,, q )  as in (9). In order to facilitate 
the comparison, the energy capture in the Fourier representation is maximized by including the Fourier 
modes in the order based on the magnitude of the energy averaged over the modes associated with each 
(kx ,  k,,. k:), such as the degenerate modes in (9) in which k, is replacing q. 

Figure 2 shows the average energy capture in the K-L and Fourier representations versus the number 
of saved constants at any instant of time. Each is scaled by the total mean energy 8 of (1 3). I t  is clear 
from Figure 2 that the K-L representation of the flow is optimal in that it  captures more energy in the 
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Figure 2. Fraction of energy content in both K-L (-) and Fourier (. . .) representations of flow involving a given number of 
saved constants 

truncated representation involving a given number of saved constants. This is indicated by the rapid 
rise in the full curve. However, the later rise in both curves is slow, which indicates that a considerable 
number of additional terms are required for further improvement in the energy capture in both 
representations. For example, in the Fourier representation an 80% energy capture requires 90 
constants to be stored, while 90% and 99% energy captures require 198 and 89 1 constants to be stored 
respectively. On the other hand, the same amounts of energy capture in the K-L representation require 
29, 80 and 5 18 constants to be stored respectively. Thus the K-L representation is indistinguishable 
from the Fourier representation in terms of the energy capture as far as less energetic higher-order 
modes are concerned and the efficiency of the K-L representation is apparent only for the energetic 
features of the flow. 

4.3. Convergence 

It is clear from the resulting data compression that the K-L representation is optimal in capturing 
energy for a given truncation. However, this is not expected to hold in general for other quantities that 
can be constructed from the truncated K-L representation of the flow in the form 

N 

k =  I 
v” = c vk, (14) 

where the index k runs through the first N conjugate pairs of modes. In Figure 3 the convergence of 
certain physically relevant quantities constructed using (14) is shown in the mean square norm ((. , .)) 
versus N. The norm of each quantity is normalized. 

Figure 3 shows the convergence of the convective heat transport ((w, 0)). This quantity stands for 
the production term in the energy equation. Its convergence is remarkably fast when compared with the 
convergence of the optimally represented quantity, namely energy ((v’, v’)), in the same figure. This is 
also observed in another appli~ation’~ where the first few energetic K-L modes contribute 
substantially to turbulence production. On the other hand, for quantities such as the horizontal, ol 
(or w2), and vertical, w3, components of vorticity, where w, = (V x u),, which are associated with the 
small scales of the flow, inclusion of a large number of modes is necessary for a satisfactory 
construction as shown in Figure 3. Note that the vorticity components involve spatial derivatives of the 
flow and it is that the spatial derivatives have an amplifying effect on the importance of the 
higher-order K-L modes in the representation. Thus the K-L representation provides a scale 
separation, with the lower-order modes contributing to the large-scale and the higher-order modes to 
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Figure 3. Convergence of normalized mean square norm of some flow quantities in K-L representation (. . ., (w, 0)); -, 
((V',V')); - - -. ((W,'JJl)); - - -. ( ( 0 3 , * J 3 ) ) )  

the small-scale features of the flow. The relatively poor convergence of the vertical vorticity is due to 
the K-L representation of the flow being dominated by the energetic horizontal rolls. 

These mean square convergence rates are reflected in the vertical profiles (we), (o: ) ' /~  and (w:)'j2 
in Figure 4. They are constructed using (14) for N = 15 (go%), N = 42 (90%) and N = 264 (99Y0) 
and compared with the exact profiles from the full simulation database. The vertical profile (06) for 
N = 264 is indistinguishable from the exact profile as shown in Figure 4(a). Note that the convergence 
of the profiles appears to be uniform throughout the vertical interval. This is expected, because each 
K-L mode in the representation is associated with a basic flow, vk of (1 0), carrying a fill resolution of 
the numerical simulation in the inhomogeneous vertical direction. In the homogeneous horizontal 
directions the truncated K-L representation of the flow carries a selective range of wave numbers; for 
example, the representations capturing 80%, 90% and 99% of the energy involve the horizontal wave 
numbers mux(lkxl, = 2, 3 and 6 respectively. 

Figure 4. Convergence of vertical profiles of some flow quantities in K-L representation (- - -, N = 15; - - -. N = 42; . . ., 
N = 264; -, exact): (a) (we); (b) p; (c) (w?)' '*;  (d) 
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The mean component of the flow, namely the mean temperature To, can also be recovered through 
the K-L representation. This is achieved by expressing the mean temperature in terms of the 
fluctuating components of the flow. The ensemble averaging of (4c) provides such an expression in the 
form 

d 2 P  d 
dz2 dz - (we). 

The mean temperature can be evaluated by integrating (1 5), after (we) is known. The fast convergence 
of the (we) profiles implies that P' can be recovered relatively well as shown in Figure 4(b) for the 
truncations under consideration. 

5. DYNAMICAL APPROXIMATION 

5. I .  Formulation 

It is of interest to study the K-L representation (10H12) in a dynamical environment. This is 
by approximating the flow fluctuation in a truncated K-L achieved through a spectral 

representation 

where the index k runs through the conjugate pairs, and substituting into (4), written symbolically for 
the flow fluctuation after the introduction of (7) as 

&' 
- = D(v', p ) ,  
at 

to obtain a semidiscrete approximation to (1 7) for the evolution of the retained modes in (1 6). 
A separate treatment is required for the mean component of the flow in (1 7) and various strategies 

are proposed in Reference 6 for this purpose. The use of (15) for the simultaneous evaluation of the 
mean temperature requires an iterative procedure in the form of running time averaging in order to treat 
the ensemble average involved. We now propose a non-iterative procedure for the treatment of the 
mean component of the flow in a K-L-based dynamical approximation. To this end the temperature is 
decomposed into the mean and the fluctuation in the form 

where the overbar indicates the horizontal average, so that 
- 
T = T(z, t) and T = 0. (19) 

This decomposition is substituted into (4) to yield 

(20b) 
au 
- + u-Vu = -Vp + Ra Pr (7 + r)e, + Pr Au, 
at 
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aT a $7 -+---=--- 
at az a+ 

for the mean component. The flow fluctuation v‘ now becomes 

V’ = [U, T]; (22) 
further, (v’) = 0 and (T)  = Z@(z). Finally, the procedure is completed by replacing (17) by (20) and 
(1 5 )  by (2 l), now involving only the horizontal averages in the previous deliberations. 

As a result of the decomposition of the temperature into the mean and the fluctuation with a 
vanishing horizontal average in (1 8), the resulting flow v’ in (22) does not contain the purely thermal 
(0, 0, q) modes mentioned in Section 4.1. However, the evolution of these modes can be recovered by 
comparing the two decompositions of the temperature in (18) and (7), so that 

8 = T - T O  + 
- 

= T - (7) + T, (23) 

and, since T has a vanishing horizontal average, by 

(24) (o.o.q)), 
a(0,o.q) = (v7 3r 

where 

v = [O, ’?; - (T)] .  (25) 

Thus the evolution of the family of purely thermal (0, 0, q) modes is implicitly governed by (21). 

5.2. Numerical procedure and results 

A database has already been generated by the original simulation of the flow. This is used to 
numerically test the procedure outlined above and to demonstrate the effects of the truncated K-L 
representation of the flow in a dynamical environment. For this purpose the flow fluctuation v‘ in (22) 
is approximated in the form (1  6), in which N = 264 pairs of K-L modes are retained corresponding to 
the resolution of 99% of the energy. This results in a factor-of45 (X 3 x 203/2 x 264) reduction in the 
number of degrees of freedom involved in the dynamical approximation in comparison with the 
original Fourier-based simulation. This particular order of truncation is chosen as a cut-off retaining 
comfortably the large-scale features of the flow, as follows from the discussion in Section 4.3. 

In order to facilitate a later comparison, equations (20) and (21), after the introduction of the 
truncated K-L representation of the flow, are numerically integrated using the same numerical 
procedures as in the original simulation. The last sample in the original database is projected onto the 
retained K-L modes to provide the initial condition. A database of 500 time samples of expansion 
coefficients uk of ( 1  6) and T of (1 8) is generated through sampling after a start-up phase. It is checked 
numerically that 5 actually has a vanishing horizontal average at each instant of time. 

The effect of the dynamical approximation on the retained K-L modes is shown in Figure 5, 
depicting the contribution of the retained modes to the energy of the flow in comparison with that of 
the corresponding K-L eigenvalues. Each is scaled by B,,, where 8, = ‘& ,Ik. There is an overall 
increase of about 3% in the total contributions of the retained K-L modes in the dynamical 
approximation when compared with g2,. This is consistent with the physical picture” in that, since 
the dissipative effects of the truncated modes due to their non-linear interactions with the retained 
modes are absent, the flow compensates by dissipating more ene:gy in the retained modes by 
increasing the energy of the modes. 
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Figure 5.  Fraction of energy content in K-L representation as a result of direct projection (-) and dynamical approximation 
with N = 264(. . .) 

The large-scale features of the flow are not affected, as inspection of the vertical profiles (we) and 
in Figures 6(a) and 6(b) indicates. The profiles are constructed using the database resulting from the 
dynarnical approximation and using the original database by retaining the same number of conjugate 
K-L mode pairs, namely N = 264. The root mean square profiles of vorticity, (o:)’” and (o~)’”, on 
the other hand, are altered as shown in Figures 6(c) and 6(d). This suggests that the effect of the 
increased energy content of the retained K-L modes as a result of the dynamical approximation is felt 
mainly by the higher-order modes in the representation. This is consistent with the scale separation 
property of the K-L representation and the expectation that in the absence of the dissipative effects of 
the truncated modes the energy cascading down the scales accumulates closer to cut-off. 

Energy does not constitute a sufficient criterion to determine those modes that are not dynamically 
significant enough to be included in the dynamical approximation. Table I1 gives the energy 8 and the 

1 
0 2 5  0 5  071 I 

025 0 5  015 I 

Figure 6. Vertical profiles of some flow quantities in K-L representation as a result of direct projection (-, N = 264) and 
dynamical approximation (. ., N = 264): (a) ( w 0 ) ;  (b) P; (c) (a$)’’*; (d) (w:)”~ 
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Table 11. Total contributions of K-L modes to energy 8 and 
production and dissipation in exact and truncated representations of 

flow with N = 264 

Energy Production Dissipation 

Exact 3.1441 6.4597 -6.4361 
Truncated 3.1 I37 64419 -6.2504 

quantities involved in the energy balance, namely production and dissipation defined as 

production = ((Ra Pr Te,, u)) + ((w, T ) ) ,  
dissipation = ((Pr Au, u)) + ((AT, T)), 

for the exact flow retaining all the modes and the truncated flow retaining N = 264 conjugate pairs of 
K-L modes. Note that the energy balance is not maintained in the truncated case and note also that the 
truncated modes contribute less than 1% to the production and around 3% to the dissipation. Since the 
production is insignificant, the energy to be dissipated in the truncated modes comes directly from the 
non-linear interactions of the truncated modes with the retained modes, which accounts for the 3% of 
the dissipation. It shows that those modes that are truncated, together with their non-linear interactions 
with the retained modes, are still dynamically active while not being significant !?om an energy point 
of view, contributing only 1% to the overall energy. 

The above considerations confirm that if one is interested in recovering the large-scale features of 
the flow in a dynamical approximation, this can be achieved by utilizing the K-L basis, resulting in a 
large reduction of the size of the system. Furthermore, Figure 6(b) indicates the success of the 
proposed non-iterative procedure of recovering the mean temperature component in the dynamical 
approximation, since it shows an indistinguishable pair of mean temperature profiles. 

6. DISCUSSION 

Perhaps one of the important features of the K-L basis {+'} is its canying of the character of the flow, 
e.g. the vertical spatial structure and the symmetries that are built into the K-L eigenfunctions, rather 
than being a general basis for the space as is the case in the Fourier basis (Vk) in (6). This may be part 
of what enables the long-term integration of the evolution equations, which capture at least the large- 
scale features of the flow through the dynamical approximation involving the truncated K-L 
representation (1 6), by constantly reminding the flow of its character throughout the integration. The 
work presented here may constitute the outlines of a procedure in which a relatively short-term 
integration could be used to generate a database for the subsequent computation of the K-L 
eigenfunctions and they in turn are used in a dynamical approximation for the long-term integration. 
The question concerning the size of the database for the evaluation of the K-L eigenfunctions 
accurately characterizing the flow has been discussed in Reference 18. 

In view of the dramatic effect of the truncation on the higher-order retained modes, a successful low- 
dimensional dynamical approximation requires the lost dissipative effects of the truncated modes to be 
somehow compensated, while keeping the size of the dynamical system small. An alternative 
technique to the introduction of an eddy viscosity, in order to compensate for the lost dissipative 
effects, is the so-called method of slaved variables. This can work suitably with an already optimally 
reduced dynamical system approximating (1 7) obtained through the Galerkin procedure utilizing the 
K-L basis. In this method a portion of the dynamical system is replaced by algebraic equations through 
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which the time evolution of the K-L modes associated with this portion is slaved to the modes whose 
time evolution is governed by the remaining portion of the dynamical system. A variation of this 
procedure is applied to the Ginzburg-Landau equation in Reference 8, in which the split into portions 
is made on the basis of so-called acceleration energy. The application of this procedure to the 
Rayleigh-Benard problem is presently being carried out. 

The K-L basis can be further utilized to explore its usefulness over a range of parameter values such 
as the Rayleigh number which are different from those reference values at which the basis is generated. 
As suggested in Reference 6, the basis is not expected in general to enjoy properties such as the 
optimal representation of the flow and the statistical orthogonality (3) of its expansion coefficients ak 
when it is in use for off-reference values of the parameters. However, it will still form a complete 
orthogonal set satisfying the boundary conditions and the continuity. It has been applied to the 
Ginzburg-Landau equation in Reference 3 and its application to the Rayleigh-Benard problem is 
currently under investigation. This application can be further facilitated by the use of the presently 
suggested treatment of the mean component of the flow in Section 5 to account for its variation with 
the parameter values. 
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